3. BIO-ENERGY -The Green Power.
India has seen strong economic growth over the past few years. It is important from a social, economic and industrial perspective that we recognize the reliable access to electricity, fuel, water and transportation infrastructure are critical to our continued growth. India has also seen significant expansion in the consumption of fuels in all forms – coal, oil and gas. Energy crisis represents a bottle neck in the progress of India’s economy.
To date, only hydroelectricity and nuclear power has been significant alternatives to fossil fuel. Dwindling non-renewable resources are no answer to the energy crisis and the only response is the use of an alternative fuel technology. Research into more efficient methods of converting renewable resources of fuels, especially non-food, non-fodder sources into – ethanol, butanol, hydrogen, methanol, diesel etc seems to be the only solution towards solving the energy crisis. This means an intense research in biofuel technology is inevitable and imperative and the tempo to translate developments in biological sciences into viable technological advantages requires specialized inputs.


Bionergy
Bioenergy is renewable energy made available from materials derived from biological sources. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the social, economic, scientific and technical fields associated with using biological sources for energy. This is a common misconception, as bioenergy is the energy extracted from the biomass, as the biomass is the fuel and the bioenergy is the energy contained in the fuel. [1]

Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugar cane, and many other byproducts from a variety of agricultural processes.


Biofuel
Biofuel is defined as solid, liquid or gaseous fuel obtained from relatively recently lifeless or living biological material and is different from fossil fuels, which are derived from long dead biological material. Also, various plants and plant-derived materials are used for biofuel manufacturing.
Potentiality of biofuels:

The use of bioenergy has two-way benefits over the environment. Being a renewable source of energy, bioenergy reduces the use of fossil fuels reducing the pollution levels. Moreover, through production of biogas, or biohydrogen from waste material contributes in minimisation of waste materials.    
Howevre one of the major advantage of bioenergy is that when done properly it can be almost greenhouse gas neutral or better.  Even though burning biomass fuel normally does release carbon dioxide, if new fuel is grown as part of the process then there is only a small overall impact to the climate.  There are also some instances where certain greenhouse gasses can be trapped and used before they escape into the atmosphere.  For example, as organic waste in municipal landfills decomposes, it gives off methane - a greenhouse gas much more powerful than carbon dioxide.  Capturing the methane and using it as fuel keeps it out of the atmosphere, and generates electricity from a waste product.
Two common strategies of producing liquid and gaseous agrofuels
One is to grow crops high in sugar (sugar cane, sugar beet, and sweet sorghum[3]) or starch (corn/maize), and then use yeast fermentation to produce ethyl alcohol (ethanol). The second is to grow plants that contain high amounts of vegetable oil, such as oil palm, soybean, algae, jatropha, or pongamia pinnata. When these oils are heated, their viscosity is reduced, and they can be burned directly in a diesel engine, or they can be chemically processed to produce fuels such as biodiesel. Wood and its byproducts can also be converted into biofuels such as woodgas, methanol or ethanol fuel[4]. It is also possible to make cellulosic ethanol from non-edible plant parts, but this can be difficult to accomplish economically.[
Solid biomass is also used. Many materials such as wood and grasses can be dried and pelletised and burnt; and this can be used for power production. Although this produces some clinker the processing uses less energy and this can give higher overall efficiency

Description of a few commercially used Bioenergy

Biomass


Biomass or biofuel is material derived from recently living organisms. This includes plants, animals and their by-products. For example, manure, garden waste and crop residues are all sources of biomass. It is a renewable energy source based on the carbon cycle, unlike other natural resources such as petroleum, coal, and nuclear fuels.

It is used to produce power, heat & steam and fuel, through a number of different processes. Although renewable, biomass often involves a burning process that produces emissions such as Sulphur Dioxide (SO2), Nitrogen Oxides (NOx) and Carbon Dioxide (CO2), but fortunately in quantities far less than those emitted by coal plants. However, proponents of coal plants feel that their way of doing it is a lot cheaper and there is a lot of dispute over this.

When biomass is combusted to produce heat, it releases carbon than was absorbed by the plant material during the plant's lifecycle[. This is because (1) approximately one third of the carbon absorbed by the plant during its life is sequestered in its roots], which are left in the soil to rot and fertilize nearby plant life, and (2) combustion of biomass produces 1-10% solid ash] (depending on type of plant used), which is extremely high in carbon (this ash is commonly used as fertilizer).

Animal waste is a persistent and unavoidable pollutant produced primarily by the animals housed in industrial-size farms. Researchers from Washington University have figured out a way to turn manure into biomass. In April 2008 with the help of imaging technology they noticed that vigorous mixing helps microorganisms turn farm waste into alternative energy, providing farmers with a simple way to treat their waste and convert it into energy.


There are also agricultural products specifically grown for biofuel production including corn, switchgrass, and soybeans, primarily in the United States; rapeseed, wheat and sugar beet primarily in Europe; sugar cane in Brazil; palm oil and miscanthus in South-East Asia; sorghum and cassava in China; and jatropha and pongamia pinnata in India; pongamia pinnata in Australia and the tropics. Hemp has also been proven to work as a biofuel. Biodegradable outputs from industry, agriculture, forestry and households can be used for biofuel production, either using anaerobic digestion to produce biogas, or using second generation biofuels; examples include straw, timber, manure, rice husks, sewage, and food waste. Biomass can come from waste plant material. The use of biomass fuels can therefore contribute to waste management as well as fuel security and help to prevent global warming, though alone they are not a comprehensive solution to these problems.


Energy from bio waste

Using waste biomass to produce energy can reduce the use of fossil fuels, reduce greenhouse gas emissions and reduce pollution and waste management problems. A recent publication by the European Union highlighted the potential for waste-derived bioenergy to contribute to the reduction of global warming. The report concluded that the equivalent of 19 million tons of oil is available from biomass by 2020, 46% from bio-wastes: municipal solid waste (MSW), agricultural residues, farm waste and other biodegradable waste streams.

Landfill sites generate gases as the waste buried in them undergoes anaerobic digestion. These gases are known collectively as landfill gas (LFG). This is considered a source of renewable energy, even though landfill disposal is often non-sustainable. Landfill gas can be burned either directly for heat or to generate electricity for public consumption. Landfill gas contains approximately 50% methane, the gas found in natural gas. Land fill gas can be easily purified and then fed into the Natural Gas grid.

If landfill gas is not harvested, it escapes into the atmosphere: this is undesirable because methane is a greenhouse gas with much more global warming potential than carbon dioxide. Over a time span of 100 years, one ton of methane produces the same greenhouse gas (GHG) effect as 21 tons of CO2. When methane burns, it produces carbon dioxide in the ratio 1:1—CH4 + 2O2 = CO2 + 2H2O. So, by harvesting and burning landfill gas, its global warming potential is reduced a factor of 23, in addition to providing energy for heat and power.

It was recently discovered that living plants also produce methane. The amount is 10 to 100 times greater than that produced by dead plants in an aerobic environment but does not increase global warming because of the carbon cycle. Anaerobic digestion can be used as a waste management strategy to reduce the amount of waste sent to landfill and generate methane, or biogas. Any form of biomass can be used in anaerobic digestion and will break down to produce methane, which can be harvested and burned to generate heat, power or to power certain automotive vehicles.

A current project for a 1.6 MW landfill power plant is projected to provide power for 880 homes. It is estimated that this will eliminate 3,187 tons of methane and directly eliminate 8.756 tons of carbon dioxide release per year. This is the same as removing 12,576 cars from the road, or planting 15,606 trees, or not using 359 rail cars of coal per year.

Liquid fuels for transportation

Most transportation fuels are liquids, because vehicles usually require high energy density, as occurs in liquids and solids. Vehicles usually need high power density as can be provided most inexpensively by an internal combustion engine. These engines require clean burning fuels, in order to keep the engine clean and minimize air pollution.

The fuels that are easier to burn cleanly are typically liquids and gases. Thus liquids (and gases that can be stored in liquid form) meet the requirements of being both portable and clean burning. Also, liquids and gases can be pumped, which means handling is easily mechanized, and thus less laborious.


Types

First generation biofuels
'First-generation biofuels' are biofuels made from sugar, starch, vegetable oil, or animal fats using conventional technology. The basic feedstocks for the production of first generation biofuels are often seeds or grains such as wheat, which yields starch that is fermented into bioethanol, or sunflower seeds, which are pressed to yield vegetable oil that can be used in biodiesel. These feedstocks could instead enter the animal or human food chain, and as the global population has risen their use in producing biofuels has been criticised for diverting food away from the human food chain, leading to food shortages and price rises.


The most common first generation biofuels are listed below.

Vegetable oil
Edible vegetable oil is generally not used as fuel, but lower quality oil can be used for this purpose. Used vegetable oil is increasingly being processed into biodiesel, or (more rarely) cleaned of water and particulates and used as a fuel. To ensure that the fuel injectors atomize the fuel in the correct pattern for efficient combustion, vegetable oil fuel must be heated to reduce its viscosity to that of diesel, either by electric coils or heat exchangers. This is easier in warm or temperate climates. Big corporations like MAN B&W Diesel, Wartsila and Deutz AG as well as a number of smaller companies such as Elsbett offer engines that are compatible with straight vegetable oil, without the need for after-market modifications. Vegetable oil can also be used in many older diesel engines that do not use common rail or unit injection electronic diesel injection systems. Due to the design of the combustion chambers in indirect injection engines, these are the best engines for use with vegetable oil. This system allows the relatively larger oil molecules more time to burn. Some older engines, especially Mercedes are driven experimentally by enthusiasts without any conversion, a handful of drivers have experienced limited success with earlier pre-"pumped use" VW TDI engines and other similar engines with direct injection. Several companies like Elsbett or Wolf have developed professional conversion kits and sucessfully installed hundreds of them over the last decades.


Oils and fats can be hydrogenated to give a diesel substitute. The resulting product is a straight chain hydrocarbon, high in cetane, low in aromatics and sulphur and does not contain oxygen. Hydrogenated oils can be blended with diesel in all proportions Hydrogenated oils have several advantages over biodiesel, including good performance at low temperatures, no storage stability problems and no susceptibility to microbial attack.


Biodiesel

Biodiesel is the most common biofuel in Europe. It is produced from oils or fats using transesterification and is a liquid similar in composition to fossil/mineral diesel. Its chemical name is fatty acid methyl (or ethyl) ester (FAME). Oils are mixed with sodium hydroxide and methanol (or ethanol) and the chemical reaction produces biodiesel (FAME) and glycerol. One part glycerol is produced for every 10 parts biodiesel. Feedstocks for biodiesel include animal fats, vegetable oils, soy, rapeseed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, pongamia pinnata and algae. Pure biodiesel (B100) is by far the lowest emission diesel fuel. Although liquefied petroleum gas and hydrogen have cleaner combustion, they are used to fuel much less efficient petrol engines and are not as widely available.

Biodiesel can be used in any diesel engine when mixed with mineral diesel. The majority of vehicle manufacturers limit their recommendations to 15% biodiesel blended with mineral diesel. In some countries manufacturers cover their diesel engines under warranty for B100 use, although Volkswagen of Germany, for example, asks drivers to check by telephone with the VW environmental services department before switching to B100. B100 may become more viscous at lower temperatures, depending on the feedstock used, requiring vehicles to have fuel line heaters. In most cases, biodiesel is compatible with diesel engines from 1994 onwards, which use 'Viton' (by DuPont) synthetic rubber in their mechanical injection systems. Electronically controlled 'common rail' and 'pump duse' type systems from the late 1990s onwards may only use biodiesel blended with conventional diesel fuel. These engines have finely metered and atomized multi-stage injection systems are very sensitive to the viscosity of the fuel. Many current generation diesel engines are made so that they can run on B100 without altering the engine itself, although this depends on the fuel rail design. NExBTL is suitable for all diesel engines in the world since it overperforms DIN EN 590 standards.

Since biodiesel is an effective solvent and cleans residues deposited by mineral diesel, engine filters may need to be replaced more often, as the biofuel dissolves old deposits in the fuel tank and pipes. It also effectively cleans the engine combustion chamber of carbon deposits, helping to maintain efficiency. In many European countries, a 5% biodiesel blend is widely used and is available at thousands of gas stations. Biodiesel is also an oxygenated fuel, meaning that it contains a reduced amount of carbon and higher hydrogen and oxygen content than fossil diesel. This improves the combustion of fossil diesel and reduces the particulate emissions from un-burnt carbon.

Biodiesel is safe to handle and transport because it is as biodegradable as sugar, 10 times less toxic than table salt, and has a high flashpoint of about 300 F compared to petroleum diesel fuel, which has a flash point of 125 F..

In the USA, more than 80% of commercial trucks and city buses run on diesel. The emerging US biodiesel market is estimated to have grown 200% from 2004 to 2005. "By the end of 2006 biodiesel production was estimated to increase fourfold [from 2004] to more than 1 billion gallons,".

Bioalcohols
Biologically produced alcohols, most commonly ethanol, and less commonly propanol and butanol, are produced by the action of microorganisms and enzymes through the fermentation of sugars or starches (easiest), or cellulose (which is more difficult). Biobutanol (also called biogasoline) is often claimed to provide a direct replacement for gasoline, because it can be used directly in a gasoline engine (in a similar way to biodiesel in diesel engines).


Butanol is formed by ABE fermentation (acetone, butanol, ethanol) and experimental modifications of the process show potentially high net energy gains with butanol as the only liquid product. Butanol will produce more energy and allegedly can be burned "straight" in existing gasoline engines (without modification to the engine or car), and is less corrosive and less water soluble than ethanol, and could be distributed via existing infrastructures. DuPont and BP are working together to help develop Butanol. E. coli have also been successfully engineered to produce Butanol by hijacking their amino acid metabolism.

Ethanol fuel is the most common biofuel worldwide, particularly in Brazil. Alcohol fuels are produced by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane, molasses and any sugar or starch that alcoholic beverages can be made from (like potato and fruit waste, etc.). The ethanol production methods used are enzyme digestion (to release sugars from stored starches), fermentation of the sugars, distillation and drying. The distillation process requires significant energy input for heat (often unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is pressed to extract its juice, can also be used more sustainably).

Ethanol can be used in petrol engines as a replacement for gasoline; it can be mixed with gasoline to any percentage. Most existing automobile petrol engines can run on blends of up to 15% bioethanol with petroleum/gasoline. Ethanol has a smaller energy density than gasoline, which means it takes more fuel (volume and mass) to produce the same amount of work. An advantage of ethanol is that is has a higher octane rating than ethanol-free gasoline available at roadside gas stations which allows an increase of an engine's compression ratio for increased thermal efficiency. In high altitude (thin air) locations, some states mandate a mix of gasoline and ethanol as a winter oxidizer to reduce atmospheric pollution emissions.

Ethanol is very corrosive to fuel systems, rubber hoses and gaskets, aluminum, and combustion chambers. Therefore, it is illegal to use fuels containing alcohol in aircraft (although at least one model of ethanol-powered aircraft has been developed, the Embraer EMB 202 Ipanema). Ethanol also corrodes fiberglass fuel tanks such as used in marine engines. For higher ethanol percentage blends, and 100% ethanol vehicles, engine modifications are required.

It is the hygroscopic (water loving) nature of relatively polar ethanol that can promote corrosion of existing pipelines and older fuel delivery systems. To characterize ethanol itself as a corrosive chemical is somewhat misleading and the context in which it can be indirectly corrosive, somewhat narrow; i.e., limited to effects upon existing pipelines designed for petroleum transport.

Corrosive ethanol cannot be transported in petroleum pipelines, so more-expensive over-the-road stainless-steel tank trucks increase the cost and energy consumption required to deliver ethanol to the customer at the pump.

In the current alcohol-from-corn production model in the United States, considering the total energy consumed by farm equipment, cultivation, planting, fertilizers, pesticides, herbicides, and fungicides made from petroleum, irrigation systems, harvesting, transport of feedstock to processing plants, fermentation, distillation, drying, transport to fuel terminals and retail pumps, and lower ethanol fuel energy content, the net energy content value added and delivered to consumers is very small. And, the net benefit (all things considered) does little to reduce un-sustainable imported oil and fossil fuels required to produce the ethanol.

Although ethanol-from-corn and other food stocks has implications both in terms of world food prices and limited, yet positive energy yield (in terms of energy delivered to customer/fossil fuels used), the technology has lead to the development of cellulosic ethanol. According to a joint research agenda conducted through the U.S. Department of Energy, the fossil energy ratios (FER) for cellulosic ethanol, corn ethanol, and gasoline are 10.3, 1.36, and 0.81, respectively.

Many car manufacturers are now producing flexible-fuel vehicles (FFV's), which can safely run on any combination of bioethanol and petrol, up to 100% bioethanol. They dynamically sense exhaust oxygen content, and adjust the engine's computer systems, spark, and fuel injection accordingly. This adds initial cost and ongoing increased vehicle maintenance. Efficiency falls and pollution emissions increase when FFV system maintenance is needed (regardless of the fuel mix being used), but not performed (as with all vehicles). FFV internal combustion engines are becoming increasingly complex, as are multiple-propulsion-system FFV hybrid vehicles, which impacts cost, maintenance, reliability, and useful lifetime longevity.

Alcohol mixes with both petroleum and with water, so ethanol fuels are often diluted after the drying process by absorbing environmental moisture from the atmosphere. Water in alcohol-mix fuels reduces efficiency, makes engines harder to start, causes intermittent operation (sputtering), and oxidizes aluminum (carburetors) and steel components (rust).

Even dry ethanol has roughly one-third lower energy content per unit of volume compared to gasoline, so larger / heavier fuel tanks are required to travel the same distance, or more fuel stops are required. With large current un-sustainable, non-scalable subsidies, ethanol fuel still costs much more per distance traveled than current high gasoline prices in the United States.

Methanol is currently produced from natural gas, a non-renewable fossil fuel. It can also be produced from biomass as biomethanol. The methanol economy is an interesting alternative to the hydrogen economy, compared to today's hydrogen produced from natural gas, but not hydrogen production directly from water and state-of-the-art clean solar thermal energy processes.


Bioethers
Bio ethers (also referred to as fuel ethers or fuel oxygenates) are cost-effective compounds that act as octane enhancers. They also enhance engine performance, whilst significantly reducing engine wear and toxic exhaust emissions. Greatly reducing the amount of ground-level ozone, they contribute to the quality of the air we breathe.


Biogas
Biogas is produced by the process of anaerobic digestion of organic material by anaerobes It can be produced either from biodegradable waste materials or by the use of energy crops fed into anaerobic digesters to supplement gas yields. The solid byproduct, digestate, can be used as a biofuel or a fertilizer. In the UK, the National Coal Board experimented with microorganisms that digested coal in situ converting it directly to gases such as methane.

Biogas contains methane and can be recovered from industrial anaerobic digesters and mechanical biological treatment systems. Landfill gas is a less clean form of biogas which is produced in landfills through naturally occurring anaerobic digestion. If it escapes into the atmosphere it is a potent greenhouse gas.

Oils and gases can be produced from various biological wastes:


·                     Thermal depolymerization of waste can extract methane and other oils similar to petroleum.


·                     GreenFuel Technologies Corporation developed a patented bioreactor system that uses nontoxic photosynthetic algae to take in smokestacks flue gases and produce biofuels such as biodiesel, biogas and a dry fuel comparable to coal.


Syngas
Syngas, a mixture of carbon monoxide and hydrogen, is produced by partial combustion of biomass, that is, combustion with an amount of oxygen that is not sufficient to convert the biomass completely to carbon dioxide and water. Before partial combustion the biomass is dried, and sometimes pyrolysed.


The resulting gas mixture, syngas, is itself a fuel. Using the syngas is more efficient than direct combustion of the original biofuel; more of the energy contained in the fuel is extracted.

Syngas may be burned directly in internal combustion engines or turbines. The wood gas generator is a wood-fueled gasification reactor mounted on an internal combustion engine. Syngas can be used to produce methanol and hydrogen, or converted via the Fischer-Tropsch process to produce a synthetic diesel substitute, or a mixture of alcohols that can be blended into gasoline. Gasification normally relies on temperatures >700°C. Lower temperature gasification is desirable when co-producing biochar but results in a Syngas polluted with tar.


Solid biofuels
Examples include wood, sawdust, grass cuttings, domestic refuse, charcoal, agricultural waste, non-food energy crops (see picture), and dried manure.

When raw biomass is already in a suitable form (such as firewood), it can burn directly in a stove or furnace to provide heat or raise steam. When raw biomass is in an inconvenient form (such as sawdust, wood chips, grass, agricultural wastes), another option is to pelletize the biomass with a pellet mill. The resulting fuel pellets are easier to burn in a pellet stove.

A problem with the combustion of raw biomass is that it emits considerable amounts of pollutants such as particulates and PAHs (polycyclic aromatic hydrocarbons). Even modern pellet boilers generates much more pollutants than oil or natural gas boilers. Pellets made from agricultural residues are usually worse than wood pellets, producing much larger emissions of dioxins and chlorophenols.

Another solid biofuel is biochar, which is produced by biomass pyrolysis. Biochar pellets made from agricultural waste can substitute for wood charcoal. In countries where charcoal stoves are popular, this can reduce deforestation.


Second generation biofuels
Second generation biofuels

Supporters of biofuels claim that a more viable solution is to increase political and industrial support for, and rapidity of, second-generation biofuel implementation from non food crops, including cellulosic biofuels. Second-generation biofuel production processes can use a variety of non food crops. These include waste biomass, the stalks of wheat, corn, wood, and special-energy-or-biomass crops (e.g. Miscanthus). Second generation (2G) biofuels use biomass to liquid technology, including cellulosic biofuels from non food crops. Many second generation biofuels are under development such as biohydrogen, biomethanol, DMF, Bio-DME, Fischer-Tropsch diesel, biohydrogen diesel, mixed alcohols and wood diesel.


Company name
Place
Status
Indian Railways

1.     90,000 hectares areas for jatropha

2.     To solve about 50% of rail requirement

3.     Amritsar Dellhhi Janasatabdi Exp run with blend oil,at 2004
D1 Mohons BioOils Ltd
Chengalpattu, near Chennai
1.    Plan to invest 80 Cr to process about 24,000 Tonnes of Jatropha

2.    With in january2007 they will produceabout 8000 tonnes of oil
Gujrat Oleo Chem Ltd
Gujrat
Plan to produce one million Tonnes by 2007, but they produce 100 tonnes per day
Tata Motors
Faridabad
1.    Take initiative at two Indica diesel car operating 5% and 10% blend biodesel

2.   Tata motor employee buses lunch trials with 10% of biodesel
Nadan Biometrix collaboration with D1 oil of UK
Andhra Pradesh and Karnataka
Scouting for about 5000 ac in Karnataka for jatropha cultivation
Southern Online Biotechnology Ltd
Andhra Pradesh
15 Crores investment for biodesel Plant
The new fuel like bioethanol can fulfill the future demand in transport sector. The ethanol is primarily manufactured from molsses a by product of sugar. Since sugarcane production is cyclical the availability and cost of production very much depend upon sugarcane crop yields. Indian ethanol blending programme could not be implemented during 2003-04 due to a low sugarcane output.

A number of ventures and policies are being devised by both central and state governments for increased production and commercialization of Biodiesel in India. It is expected that the demand for biofuels from vegetable oils and fats will shoot up to 3 million Tons a day. Public Sector oil firms have announced a price of Rs.25/- per litre for procuring Biodiesel extracted from nonedible oil seeds for mixing in diesel. A number of major companies are entering the biofuel segment including IOCL, Reliance energy limited, Godrej Agrovet Ltd. Emami (India’s leading toiletries outfit) to name a few. Apart from these, a number of companies planning to set up new units include: Kochi refineries Ltd., teamsustain Ltd. (Kochi), Shirke Biohealthcare Pvt. Ltd. (Pune), Bhoruka Power corp. Ltd. (Karnataka), Southern Online Biotrechnologies Ltd. (AP), Jain irrigation System Ltd. (Chhatissgarh), Nova Biofuels Pvt. Ltd. (Panipat), Natural Bioenergy Ltd. (AP), Sagar jatropha oil Extractions Pvt. Ltd. (AP), to name a few.

A few uses of  biofuels in household sector of  India
The rural population in India uses biogas as alternative source for energy now.  Biogas is a cheap and environment-friendly source of energy that has a tremendous scope of promotion in the area as only 8% of people use it at present. Much superstition is attached to it as it is derived from animal waste.


Conclusion:
In a nutshell we can conclude saying, the most significant commercial challenge in biofuels will be the choice of technology for appropriate commercial models. Biofuel will need acceptance from society and will need to be considered as benign fuels which benefit the environment. From an economic perspective, biofuels will have to survive as cost competitive alternatives and the technology will have to prove itself  beyond incentives and mandates. India should give biofuels their due recognition and must develop a comprehensive national stategy for the development and commercial application of biofuels. It is indeed an unprecedented opportunity for India to lead the world in a nascent industry with great relevance to India.